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M Solubility
| =

= How do we understand solubility?
= “Like dissolves like”

= Polar vs. non-polar solvents

= Typically refers to the degree of charge
separation in the solvent molecule

« The greater the strength and / or separation
of charges, the more polar the solvent
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yq Quantifying Behavior
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= If we want to be quantitative, there are
several approaches; two examples:

» Kauri-butanol (Kb) value (ASTM D1133)

« Indicates maximum amount of compound that can be
added to solution of kauri resin (resin from the kauri
tree of New Zealand) in butanol without causing
cloudiness

= Octanol-water partition coefficient (K, or log P)
(ASTM E1147)

« High values indicate compound prefers octanol phase
(less polar)

« Low values indicate compound prefers water phase
(more polar)
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yq Quantifying Behavior
I
= Can also make a thermodynamic argument —
for example, based on the removal of a
single molecule from a material
= Must overcome all intermolecular interactions

(“stickiness™) between molecule and its
neighbors to do this

= This occurs during vaporization, and also during
dissolution

= Prof. Joel Henry Hildebrand (UC Berkeley
Chemistry) proposed this treatment

= Hildebrand solubility parameter defined as the
square root of the aforementioned quantity (the
cohesive energy density)
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yq Hildebrand Solubility Parameter
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Hildebrand solubility
parameter
[typical units are
(cal/cm3®)¥2 or MPal/?]

S =+/CED =

Cohesive
energy density
of compound
(“molecular
stickiness”,
energy/volume)

Heat of vaporization of
compound (energy/mol)

/ Thermal energy
available at a

. RT given temperature

(energy/mol)

/

Molar volume
of compound
(volume/mole)

Hardest thing to
find is the heat of
vaporization of a
compound (think
about plastics!)
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What contributes to
molecular “stickiness”?

| =

= Dispersion Forces

All atoms are surrounding by electron .
“clouds”

The electron cloud is, on average, evenly
distributed around the atom

At a given instant, however, the
electron distribution may be lopsided

This temporary polarization results in
attractive interactions with nearby atoms
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Figures from http://wps.prenhall.com/wps/media/objects/946/968975/ch10_02.htm



What contributes to
molecular “stickiness”?

i

| =
= Polar interactions ©
O
= Some atoms have a greater affinity for )k
electrons than others (more HsCo O

electronegative)

= Bonds between atoms of differing

electronegativities are polarized as a )k
result HC™ CH,

= Dipoles thus formed attract one another

= Same idea as with dispersion forces, but
dipoles are permanent, not temporary J§



UMASS
LOWELL

What contributes to
molecular “stickiness™?

i

=
= Hydrogen bonding

= Hydrogen has just one electron, so when electron
density is pulled away from hydrogen (i.e. by an
electronegative atom), the nucleus is exposed

= This results in exceptionally

1 1 1 H — Hydrogen bond
strong polar interactions with i\

other atoms possessing extra e

. H
lone pairs of electrons

= As with previous cases, the S v
Interaction is electrostatic In
nature (opposites attract)

Figure from http://wps.prenhall.com/wps/media/objects/946/968975/ch10_02.htm
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Shortcomings of a single
yq parameter approach
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= The Hildebrand solubility parameter can be useful,
but it does not account for the origins of molecular
“stickiness” (or their consequences)

= This means it is possible for various combinations of
iIntermolecular interactions to give rise to the same
Hildebrand solubility parameter

=« EXAMPLE: nitroethane and 1-butanol have the same
Hildebrand solubility parameter (=23 MPal/2); neither will
dissolve epoxy resin alone, but a blend of the two will
= Hildebrand recognized this, and tried to address it
by further classifying compounds according to
hydrogen bonding ability (weak, moderate, strong),
but this approach has limited utility
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Accounting for interactions:
Hansen Solubility Parameters

i

I
= Hansen solubility parameters address this

Issue by specifying separate quantities for
each of the three aforementioned
Intermolecular forces:
=« 0, — Dispersion parameter
= 8, — Polar parameter
« 0, — Hydrogen-bonding parameter

= Can still define total solubility parameter
(Oiota® = 04° + 0,2 + O,2), but can separate
cohesive energy density by interaction type
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Thinking about Hansen
Solubility Parameters (HSPs)
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=
= HSPs mean we can represent each
compound as a point in 3D “solubility space”

= Distance between HSP points in solubility
space Is defined as follows:

R? = 4(5d1 _5d2)2 t (5p1 _5p2)2 T (5h1 _5h2)2

a

= With some work, it is also possible to define
an interaction radius (R,) and a reduced
energy difference (RED = R_/R,)
=« RED > 1 2 Incompatible, RED < 1 - Compatible
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Thinking about Hansen
Solubility Parameters (HSPs)

i

|

= In some cases, HSP values are intuitive
« Hydrocarbons are dominated by J,
« Water is dominated by 9,

= Similar compounds will have similar HSPs (for example, n-butanol
will be similar to n-propanol)

= HSPs can be correlated with other properties
« Strong correlation between refractive index and 9
= Strong correlation between dipole moment and §,

= Strong correlation between surface energy and a mix of
parameters plus molar volume

= Not perfect
= Molecular size and shape are not captured
= Some interaction types are ignored (ion-dipole for example)

= Nevertheless, “good enough” to give reasonable predictions




Defining HSPs: 7
Group Contributions

| =
= Break molecule into functional groups

= Add up the o, 6., and o, contributions
from each group to generate estimate

= Van Krevelen, Hoy, Beerbower

= Based on a restricted range of functional
groups

= Different starting values so different end
results

s Stefanis-Panayiotou — more modern
= All require manual group assignment
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Hansen Solubility Parameters
yq INn Practice (HSPIP)
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= Software package developed by Hansen, Abbott and
Yamamoto

= Able to provide HSPs for arbitrary molecules

« Has a large look-up table for materials whose HSPs are
known

=« Utilizes “Yamamoto Molecular Breaking” (Y-MB) model for
other compounds
=« Carefully chosen / optimized set of functional groups

=« Sanity checking vs. other data sources (refractive index,
dipole moment, surface tension, heat of vaporization)

=« Tested against “over-fitting”
= Best estimate of HSPs available at the moment
= HSPIP also automates aforementioned manual methods
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Hansen Solubility Parameters
yq INn Practice (HSPIP)

|
s As HSPs are related to heat of
vaporization, HSPIP can:
= Estimate boiling point
=« Estimate vapor pressure

= Estimate Antoine coefficients

= Melting point predictions are made
Independently using an external model
based on an extensive validated
melting point database




The Classic HSP
Measurement Technique

| =

The key to HSP’s practical success

Widely applicable
= Crystalline solids
=« Polymers

= Nanoparticles

= DNA

Take 20 test tubes, find if the stuff is “happy” in 20
different, representative, known solvents

= Set of solvents should neither be “all bad” or “all good”

= Best to cover a decent range of HSP values with solvents

Plot the solubility sphere in 3D HSP solubility space
=« Can define center of sphere (i.e. HSPs for “stuff”)
» Can define radius of sphere (i.e. interaction radius R,)
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yq High Throughput Options
|

= Assembling even 20 solvents can be a
big barrier to HSP measurement

= Small labs /Zcompanies/universities
may not want to do this

= Big companies have robots

= All large HSPIP users have automated HSP
determination systems
« Some better than others

« Some automate solubility measurements
« Agfa-Gaevert, Belgium offering this as a service
« Also VLCI in the Netherlands




= Chemspeed
FORMAX unit
enables
automated
high-
throughput
testing
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yq Grid Technique
| =

= Use 4 pairs of solvents

= Create a “grid” spanning the relevant
solubility space

= Developed at U. Erlangen for organic
photovoltaics

= Much easier with robotics
= Great for targeted measurements
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Fizg. 4. HSP diagrams of PCBM: a) different solvents method and b) binary solvent gradient method with solubility limit 5 mz mL ",
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yq Notes on Polymer Solubility
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= An important asymmetry
= A polymer can be rather insoluble in a solvent

= The same solvent can be quite soluble in the
polymer

= This relates to the entropy of mixing

= Much more to be gained (entropically) dissolving
small molecules than polymers

= Likewise, semi-crystalline polymers resist
dissolution all the more (greater “stickiness”
between molecules in crystalline domains)

« For example, polyethylene and polypropylene dissolve
In hydrocarbons (as predicted by HSP values) — but only
at elevated temperatures
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HSPiP Refinements: Molar ™
J Volume Correction (MVC)

PolyLacticAcid

Double-Click Radius [7] ESC Alert “Inside”
40 [ Limit DMH’CDGA 1

Possible 6D bad fit
| In= 20 Out= 7 Total= 27 ‘ ‘

D= 19.19 P=10.14 H=6.22

Tot = 22.58

R=11.1

Fit= 1.000

Core= £[0.15, 0.35, 0.80]
B

Classic fit — size of
solvent not included

PolyLacticAcid

Double-Click Radius [ ESC Alert Insu:Ie
40 [ Limit [&F] MVC O] GA 1
In= 20 Out= 7 Total= 27

D= 18.41 P=9.06 H=6.329
Tot = 21.49

R=19.9
Fit= 1.000

] Core= +[0.20, 0.35, 0.70]
Wrong In=0

B

MVC fit — small
solvents “penalized”,
large solvents
“accommodated”



HSPIP Refinements:

=

Identifies
solvents
at the
edge of
the
apparent
solubility
sphere

These
improve
fits the
most with
the least
effort

Solvent Range Check (SRC)

() HSPiP 3rd Edition 3.1.25
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FindMuols

File Distance  Diffusion  Adh,/Visc. ForceFit Teas HPLC IGC  GC  Temp.  Evap.
No.  Solvert &0 &P &H Score  RED MYal &
181 | Cyclohexanes 16.8 0 02 0 1144|1083
443 |lsopropyl Ether 151 32 32 0 1001|1418
417 |Hexane 1435 0 0 0 1319 1314
325 | Ethanol 15.8 88 194 0 1340 |586
456 | Methanol 147 123 223 0 1670 |406
| 636 | Water 155 16 423 0 3360 |18
l 3 Acetic Acid 145 8 135 1.08 |576
120 Carbon Disulfide (0 Dipole Moment) 202 0 06 1.06 &6
308 | Dipropyl Aming 153 14 41 1.07 136.9 s
345 | 2-Bthyl-Hexanol 155 33 1.8 0.99 156.9
376 | Bthylene Glycol Monoethyl Ether 155 72 14 095 |5975
388 | Fomic Acid 1486 10 14 .08 |379
423 | lsoamyl Acetate 15.3 a 7 0.54 150.2
430 | Methyl Isobutyl Carbinol 154 33 123 1.07 127.2
523 | Methylal (Dimethoxy Methane) 15 18 8.6 108|831
4P v aH aH v &D &P v 8D

Grid  Help

E i E E Double-Click Radius [~] ESC Alert

D@

[] Hide unused [] SRC
] 55« [ D/A
& ks

[ Master [C] 10K [C] MyDB

PolylLacticAcid

"Inside™
40 [0 umt [ Mve [ Ga
Possible 8D bad fit e
In= 20 Qut= 7 Total= 27
D=19.17 P=10.14 H=6.21 E
Tot = 22.56
R=11.1
Fit= 1.000

Core= £[0.20, 0.35, 0.85]
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= Divide 9, into hydrogen bond donor
and acceptor components

= Allows for specific interactions that
might increase solubility, such as C=0
acting as acceptor and —OH as donor

= Careful analysis shows it’s important
= SO far not a great success for normal fits
= Continuing development work

Bond Donors and Acceptors




HSPIP Refinements:

Accounting for Temperature

-

% ForceFit  Teas HPLC GC  Temp. Evap. FindMels Grid Help PolyLacticAcid
L Temperature
| i 5D 5P 5H score RED  Mvol - | (o) 8 G0N D°:b‘;EU'd‘DHELIF"Er'tE E ESV%%“ e Inside’
Temperaturs °C _ 19013 (8802 (5945 |1 0122 (309 "ILEEIT' IH_ - Ou':_ ot 27 -:
= Thermal 70 £e 18010 [12303 (72406 |1 0273 |96 D= 17.54 P=9.80 H=5.16 T
exbansion | Defaut axpansion cosficiert 17010 (7302 (71405 |1 0417 (644 e Etlﬁ io 74 |
P 0.0010 18110 [6601 (93407 |1 0465 (699 | Cssd DDA preyaog
60408 (9002 (5144 |1 0481 (302 £ Z
reduces Core= +[0.15, 0.30, 0.85]
_ — Quick Calculator — 16809 (5701 (8006 |1 0556 218 G searcn_Tet L Wrong In= 0
cohesive 50 s &M 17815 |3101 (5705 |1 |06% |805 [ Master [ 10K [T MyDB =
e n e rgy 163 67 55 M TC 15514 10404 (70407 1 0670 (738
. 17410 137403 11309 |1 0649 [774
densi ty E | S| 2 18410 |16404 |10208 |1 0723|713
80 &P  G&H 17510 (1800 (9007 |1 0.850 (857
= HSP 160 50 50 A25C 15813 |5302 (72406 |1 0752 (986
17016 |[18401 5345 |1 0382 (731
151 49 46 ATC
values 185408 |6501 (137-10 |1 079 [105
decrease 18012 (1400 (20402 |1 0882 (1066
E 17810 (1000 (31492 |1 0885 (1211
as aresult |L
OH v &D 4GP v 8D
25 25 25
= Accounted
for by
indicating
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() HSPiP 3rd Edition 3.1.25

HSPIP Refinements:
Fitting Solubility Data
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File Distance  Diffusion  Adh./Visc. ForceFit Teas HPLC IGC GC  Temp. Evap. FindMels  Grid  Help
No. Solvert 50 5P 5H scoe RED  Mvel | (WS GO
ACN 153|180 |61 208 |18%8 |m3 14 i
Advanced Sphere Fitting
" . w H l_'h|
©) Classic GA Inside Fitting Accuracy HE 180 ] T T T T ]
_ l‘?' 'l [MEdi“m b 180 3
) Double Sphere 1
aD aP aH 140 ]
[[] Useiniisl guess 170 40 30 ]
120 ]
@ Datapoirts  [| Goodissmall [7] Splt High/Low @ 150.000 100 1
Radius for Data fit  |6.0 ze Log & - 3
Fit to Exponential MVC (") Show Fit @ Show Distance o
Data fit results shown in main form 40 3
20 1
[+]
0
B Distance
| 1" [Propylene Carbonate 1200 (180 41 608 [1438 [85 | _l
I I I I I 1 I I 1
4GP v GH GH v &D 4P v GD
25 25 25
O
-
o

An API w DMS0 and 4 branches

Double-Click Radius [] ESC Alert
40 [ umt [ ] MvC @] GA E
In= 16 Qut= 0 Total= 16
D= 19.20 P=12.30 H=8.90
Tot = 24.48
R=E5.3
Fit= 0.884
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Special Topics:
yq HSPs and Surfactants
|

i
= They don’t mix

= You can estimate or measure the HSP of a
surfactant molecule — it’s just an ordinary
molecule

= Solubility parameter models in general (not
just HSPs) assume that the same
parameters apply everywhere (“mean field”)

= Cannot deal with situations where interactions
are with specific parts of a molecule, molecules
orient, etc.

= This can be a problem when dealing with
nanoparticles as well, i.e. If they possess multiple
types of surfaces (modified or not, ends vs. sides,
edges vs. faces, etc.)
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Special Topics:
Stain Removal

Y

|
= No Issues when using HSP to guide
solvent selection for stain removal

= Important to keep in mind however that
diffusion in is faster than diffusion out

= That’s why our plastic microwave dishes
become stained over time

s With surfactants, other models needed

= EX. Hydophilic-Lipophilic Difference - Net
Average Curvature (HLD-NAC) model
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Specific Topics.
yq Solvent Blends

| =

= A perfect HSP match with a perfect solvent (from
the standpoint of cost, safety, vapor pressure, odor,
regulatory approvals, etc.) is very rare (few new
solvents)

s Can create blends to address this issue

= An X:Y mix of two solvents leads to an X:Y average
of their HSPs (where X and Y are in vol%o)

= YOou can even create a perfect solvent from a mix of
two non-solvents
=« This was the proof of the power of HSP 40 years ago
= Impossible to do with Hildebrand

= HSPIP can propose both binary and ternary blends,
estimate and optimize evaporation rates
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Special Topics: Example of
Rational Green Substitution

Y

| =
= FAME (Fatty Acid Methyl Esters) are
not particularly good solvents, but are

“green” [16.4, 2.6, 4.5]

= Glycerol carbonate comes from bio-
glycerol, CO, (in principle) and is bio-
degradable — but is much too polar to
be highly useful [17.9, 25.5, 17.4]

= A 60:40 mix Is an impressive match for
a great (but unusable) solvent like
dimethyl acetamide (DMACc)




UMASS
LOWELL

Special Topics: HSPs and
yq Biological Systems
| =

= Proteins, DNA bases exist in high HSP space

(DNA bases =2 [19, 8, 8])

= Chemicals that interact with and 7/ or disrupt these
biomacromolecules should have similar HSPs
« Useful for identifying potentially cytotoxic and 7/ or
therapeutic agents

= Skin permeation is predicted in a much more
nuanced manner than log K., method

= DMSO is a good HSP match for skin; doesn’t destroy it,
permeates through it

= Terpenes indicated as permeation enhancers, but this
depends on what they’re mixed with; 50:50 ethanol /
terpenes gives HSP match with skin as well

= Alternatively, stay away from [17,8,8] if you want to avoid
skin permeation
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yq Special Topics: Glove Selection
| =
= If there’s interest in choosing the right

gloves for a chemical, make sure there’s
a big HSP mismatch between chemical

and glove

= Rather obvious, but confirmed by large
studies

= A rational way to choose gloves for handling
cytotoxic chemicals

= Also good for handling any new chemicals
with unknown properties more generally
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Special Topics:
Aromas/Fragrances

= Many aroma and fragrance HSPs are known
= Unknowns are often simple molecules, enabling accurate HSP predictions

= Flavor scalping, migration etc. explained using partition coefficients (from
HSPs) and diffusion theory (depends on molecular size, shape)

Loss of aroma chemical v HSP Distance from polymer

100.0%
* e,

80.0%
y=-0.1059x+ 1.3685 ¥
40.0% \\
20.0%
»
0.0% : : : : + %
10

-20.0%

% loss of aroma chemical

¢

12

-40.0%

HSP Distance




UMASS
LOWELL

yq Conclusions
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HSPs represent a useful middle ground when treating
solubility

= Not just empirical correlations (thermodynamic basis)

= Detailed enough to approximate reality much of the time

= General enough to apply to a range of materials
= Highly polar / charged species represent one exception

= Amphiphilic species (i.e. where different interactions are localized to
different parts of the molecule) represent a second exception

= Determined relatively easily (depending on definition)

Once HSPs are known, there are many, many applications
=« Finding a solvent for a new polymer or chemical
= Replacing a bad solvent with greener options
= Looking to cause or prevent skin permeation
=« ldentifying appropriate personal protective equipment (PPE)
=« Controlling flavor scalping, migration, etc.
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